

Государственное бюджетное общеобразовательное учреждение среднего общего образования Самарской области средняя общеобразовательная школа имени Героя Советского Союза Михаила Петровича Крыгина села Кабановка муниципального района Кинель-Черкасский Самарской области

УTВ	ЕРЖД	EHO:

И.о. директора школы:____/Л.А. Таинкина/ Приказ № 49-ОД от 29.08.2022 г.

ПРОГРАММА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

«Решение задач повышенного уровня» (полное наименование)

<u>11</u> (класс)

2022 — 2023 учебный год (срок реализации)

СОСТАВИТЕЛИ (РАЗРАБОТЧИКИ)

Должность: учитель математики и информатики Ф.И.О. Золотарева Валентина Викторовна

«ПРОВЕРЕНО»

Учитель, ответственный за BP: _____ Павлова С.А.

Дата: 26.08.2022 г

Пояснительная записка

Программа составлена на основе Закона об образовании РФ, Федерального компонента государственного стандарта общего образования, стандарта основного общего образования по математике/ приказ МО РФ «ОБ утверждении Федерального компонента Государственных стандартов начального общего, основного и среднего (полного) общего образования №1089 от 05.03.2004г.», программы для общеобразовательных школ, гимназий, лицеев, 2004г., составители Г.М. Кузнецова, Н.Г. Миндюк.

Практикум по решению математических задач разработан для углубления и расширения знаний учащихся. Курсу присущи систематизирующий и обобщающий характер изложений, направленность на закрепление и развитие умений и навыков, полученных на уроках математики.

Курс включает в себя основные разделы основной и средней школ по алгебре и началам анализа, геометрии и ряд дополнительных вопросов, непосредственно примыкающих к этому курсу и углубляющих его по основным идейным линиям. Материал подобран таким образом, чтобы обеспечить обобщающее повторение основных тем курса, углубить и расширить знания учащихся по темам "Тождественные преобразования выражений", "Решение уравнений и их систем", "Решение неравенств и их систем", "Применение производной" и др. В программе более широко рассматриваются вопросы решения уравнений, неравенств, систем уравнений с модулями и параметрами, а также решаются иррациональные, тригонометрические неравенства. Больше внимания уделяется решению задач с использованием свойств функций с привлечением аппарата математического анализа.

Элективный курс ориентирован на расширение базового уровня знаний учащихся по математике, является предметно-ориентированным и дает учащимся возможность познакомиться с интересными, нестандартными вопросами математики, с весьма распространенными и не очень методами решения задач.

Отдельные вопросы, рассматриваемые в курсе, выходят за рамки обязательного содержания. Вместе с тем, они тесно примыкают к основному курсу. Поэтому данный элективный курс будет способствовать совершенствованию и развитию важнейших математических знаний и умений, предусмотренных школьной программой. Обобщение и систематизация знаний укрепит математический аппарат учащихся и подготовит их к сдаче ЕГЭ, а также позволит им успешно овладевать математическими знаниями при получении дальнейшего образования.

Целью курса внеурочной деятельности является

создание условий совершенствования математической культуры и творческих способностей учащихся

расширение возможностей учащихся в отношении дальнейшего профессионального образования

В процессе изучения курса ставятся и решаются следующие задачи:

- формировать навыки применения свойств тригонометрических функций и соотношение между тригонометрическими функциями при преобразовании тригонометрических выражений, при решении тригонометрических уравнений и неравенств, при решении нестандартных задач;
- формировать представления о новых методах решения тригонометрических уравнений; об уравнениях с обратными тригонометрическими функциями и некоторых методах их решения;
- развивать способности учащихся к математической деятельности;
- развивать коммуникативные навыки в процессе практической деятельности;
- способствовать формированию познавательного интереса к математике.
- формирование у учащихся целостного представления о теме, ее значения в разделе математики, связи с другими темами,
- формирование поисково-исследовательского метода, аналитического мышления, развитие памяти, кругозора, умение преодолевать трудности при решении более сложных задач
- осуществление работы с дополнительной литературой,
- акцентирование внимания учащихся на единых требованиях к правилам оформления Mondershier and различных видов заданий, включаемых в итоговую аттестацию за курс полной общеобразовательной средней школы;

Цели и задачи курса

- Формирование прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности, достаточных для изучения смежных дисциплин и продолжения образования.
- Формирование у учащихся устойчивого интереса к предмету; ориентацию на профессии, существенным образом связанные с математикой, подготовку к обучению в вузе.
- Формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов.
- Овладение устным и письменным и письменным математическим языком.
- Развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей каждого ученика на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности, не ограничивая сверху уровень сложности используемого задачного материала.

- **Развитие** как идейной, так и технической подготовки учащихся, т.е. с одной стороны регулярное идейное обогащение, с другой развитие технических возможностей, увеличение объемов проводимых без ошибок выкладок.
- Развитие таких качеств, как сознательность, внутренняя честность, научное честолюбие.
- **Воспитание** средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного процесса.

Требования к уровню освоения содержания курса.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- построения и исследования простейших математических моделей:
- расчетов по формулам, обращаясь при необходимости к справочным материалам;
- для решения учебных и практических задач, требующих систематического перебора вариантов.

Обще учебные умения, навыки и способы деятельности.

В ходе изучения курса учащиеся продолжают овладение разнообразными способами деятельности, реализуют возможности самостоятельно ставить учебные цели, искать и использовать необходимые средства и способы их достижения, контролировать и оценивать процесс и результаты деятельности, приобретают и совершенствуют опыт:

- проведение доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;
- решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
- планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев, выполнения расчетов практического характера;
- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

- самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
- учащиеся должны приобрести умения решать задачи более высокой по сравнению с обязательным уровнем сложности, точно и грамотно формулировать изученные теоретические положения и излагать собственные рассуждения при решении задач, правильно пользоваться математической терминологией и символикой, применять рациональные приемы вычислений и тождественных преобразований, использовать наиболее употребительные эвристические приемы;
- систематизация математических знаний и умений, необходимых в практической деятельности и продолжения образования
- В результате успешного изучения курса учащиеся должны знать: алгоритмы решения уравнений, неравенств, содержащих переменную под знаком модуля; способы решения систем уравнений, неравенств различного уровня сложности; приёмы рационального счета; основные методы дифференцирования сложных функций; применение производной при решении задач прикладного характера;
- В результате успешного изучения курса учащиеся должны знать: алгоритмы решения уравнений, неравенств, содержащих переменную под знаком модуля; способы решения систем уравнений, неравенств различного уровня сложности; приёмы рационального счета; основные методы дифференцирования сложных функций; применение производной при решении задач прикладного характера;

Формы организации занятий.

Элективный курс по теме "Практикум по математике" входит в образовательную область "Математика" и представляет углубленное изучение теоретического материала укрупненными блоками. Занятия проводятся в форме обзорных лекций, на которых сообщаются теоретические факты, семинаров и практикумов по решению задач, а также используется такой метод обучения, как метод проектов, который позволяет реализовать исследовательские и творческие способности учащихся. При работе будут использованы приемы парной, групповой деятельности для осуществления элементов самооценки, взаимооценки, умение работать с математической литературой

ОСНОВНОЕ СОДЕРЖАНИЕ

Содержание образования развивается в следующих направлениях:

- Систематизация сведений о числах; формирование представлений о расширении числовых множеств как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
- Развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

- Систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем использовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
- Совершенствования математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
- Формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.
- Новые идеи, не опирающиеся на дополнительные теоретические сведения, вводятся через задачи по схеме: задача самостоятельный поиск решения разбор ее решения выделение идеи.
- Использование принципа регулярности, параллельности, опережающей сложности принципа смены приоритета, вариативности, самоконтроля, принципа быстрого повторения, работы с текстом и моделирования ситуации.

1. Числовые и буквенные выражения.

• Делимость целых чисел.

Признаки делимости. Задачи на делимость, связанные с теоремой Ферма и разложением на множители. Текстовые задачи, использующие делимость целых чисел.

• Решение задач с целочисленными неизвестными.

Диофантовы уравнения первого и второго порядка с двумя неизвестными. Другие уравнения в целых числах. Уравнения с несколькими неизвестными в натуральных числах. Неравенства в целых числах (графические иллюстрации). Методы решения целочисленных задач: разложение на простые множители, теорема о делении с остатком, правило крайнего, оценки переменных, организация перебора. Целочисленные прогрессии. Целые числа и квадратный трехчлен.

• Комплексные числа.

Понятие комплексного числа. Алгебраическая форма комплексного числа. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма комплексного числа. Модуль и аргумент комплексного числа. Степени и корни. Применение комплексных чисел в элементарной математике и геометрии.

• Многочлены с одной переменной.

Деление многочленов. Рациональные корни многочленов с целыми коэффициентами. Схема Горнера. Теорема Безу. Формулы сокращенного умножения для старших степеней. Многочлены от нескольких переменных, симметрические многочлены.

• Преобразование алгебраических выражений.

Преобразование рациональных выражений. Преобразование иррациональных выражений. Преобразование показательных выражений. Преобразование логарифмических выражений. Преобразование выражений, включающих арифметические операции, а также операции возведения в степень и логарифмирования.

2. Тригонометрия.

- Тождественные преобразования тригонометрических выражений. Тригонометрические функции тройного аргумента.
- Уравнения, приводящиеся к простейшим тригонометрическим уравнениям. Однородные тригонометрические уравнения.
- Решение тригонометрических уравнений методом разложения на множители. Решение тригонометрических уравнений с применением формул понижения степени.
- Применение универсальной подстановки при решении тригонометрических уравнений. Применение сумм в произведения и произведений в суммы при решении тригонометрических уравнений.
- Решение тригонометрических уравнений методом введения вспомогательного угла. Решение тригонометрических уравнений методом замены неизвестного, сведение к квадратным уравнениям.
- Решение тригонометрических уравнений с помощью оценки их левой и правой частей.
- Решение уравнений с обратными тригонометрическими функциями.
- Системы тригонометрических уравнений.
- Тригонометрические неравенства.
- Тригонометрические уравнения, решаемые с помощью тригонометрических неравенств.
- Отбор корней тригонометрических уравнений.
- Решение тригонометрических уравнений, неравенств и их систем, содержащих переменную под знаком модуля.
- Задачи, связанные с графиками тригонометрических функций.
- Задачи, связанные с производными тригонометрических функций.
- Задачи с параметрами.
- Смешанная тригонометрия.

3. Функции.

• Функции и графики.

Определение функции. Способы задания функции. Классификация элементарных функций. Свойства элементарных функций. Чтение и построение графиков функций.

• Исследование функций.

Область определения функции. Множество значений функции. Разрыв графика функции. Монотонность функции. Экстремумы. Нули функции. Промежутки знакопостоянства. Четность. Периодичность. Наибольшее и наименьшее значения функции. Выпуклость графика функции. Асимптоты. Ограниченность функции.

• Исследование основных алгебраических функций без использования производной.

Линейная функция. Квадратичная функция. Степенная функция. Дробно — линейная функция. Взаимно обратные функции. Преобразования графиков функций. Композиция функций и функциональные уравнения.

4. Начала математического анализа.

• Понятие о пределе последовательности.

Бесконечные последовательности. Последовательности ограниченные и неограниченные. Предел последовательности. Теорема о сходящихся последовательностях. Монотонные последовательности. Теорема Вейерштрасса. Переход к пределам в неравенствах.

• Понятие о пределе функции.

Понятие о непрерывности функции. Предел функции в точке. Предел функции на бесконечности. Односторонние пределы. Бесконечные пределы. Асимптоты. Задачи с физическим содержанием по теме: «Предел функции».

• Понятие о производной функции.

Физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные основных элементарных функций. Производные сложной и обратной функции. Вторая производная. Применение производной к исследованию функции и построению графиков.

• Применение производной при решении прикладных задач.

Использование производной при решении уравнений и неравенств, текстовых, физических и геометрических задач, при нахождении наибольших и наименьших значений. Решение задач практической направленности с применением производной. Применение производной при решении некоторых задач с параметрами. Применение производной при решении прикладных задач. Экстремальные задачи в целых числах.

• Понятие об интеграле.

Первообразная и неопределенный интеграл. Интеграл и формула Ньютона - Лейбница. Геометрический смысл интеграла и его применение для вычисления площадей и объемов. Примеры применения интеграла в физике и геометрии. Простейшие дифференциальные уравнения.

5. Уравнения и неравенства.

• Целые рациональные уравнения.

Алгебраические преобразования, замена переменной, применение свойств функций при решении целых рациональных уравнений. Некоторые примеры уравнений высших степеней, решаемые разложением левой части уравнения на множители мето-

дом неопределенных коэффициентов. Возвратные и симметрические уравнения. Рациональные корни уравнения с целыми коэффициентами, понижение степени уравнения.

- Уравнения, содержащие переменную под знаком абсолютной величины (модуля).
- Дробно рациональные уравнения.

Алгебраические преобразования, замена переменной, применение свойств функций при решении дробно — рациональных уравнений.

• Иррациональные уравнения.

Алгебраические преобразования, замена переменной, применение свойств функций при решении иррациональных уравнений.

• Показательные уравнения.

Алгебраические преобразования, замена переменной, применение свойств функций при решении показательных уравнений. Отбор корней в показательных уравнениях.

• Логарифмические уравнения.

Алгебраические преобразования, замена переменной, применение свойств функций при решении иррациональных уравнений. Отбор корней в логарифмических уравнениях.

• Комбинированные уравнения.

Метод мажорант при решении уравнений. Использование различных свойств функций: использование области определения, ограниченности функции (область значений). Удачная группировка или подстановка. Решение уравнений с помощью оценки их левой и правой частей. Уравнения, решаемые функционально — графическим методом.

- Системы целых алгебраических уравнений.
- Системы, содержащие дробно рациональные уравнения.
- Системы, содержащие иррациональные уравнения.
- Системы, содержащие показательные уравнения.
- Системы, содержащие логарифмические уравнения.
- Решение текстовых задач.

Задачи, связанные с понятиями «концентрация» и «процентное содержание». Задачи на движение. Задачи на работу. Задачи, в которых число неизвестных превышает число уравнений системы. Задачи, которые решаются при помощи неравенств. Задачи с целочисленными неизвестными. Задачи с альтернативным условием.

- Геометрический подход к решению негеометрических задач.
- Рациональные неравенства.
- Показательные неравенства.

- Логарифмические неравенства.
- Иррациональные неравенства.
- Неравенства с модулем.

• Комбинированные неравенства.

Метод интервалов при решении неравенств. Метод замены множителей (метод рационализации) при решении неравенств. Метод оценки при решении уравнений и неравенств.

• Неравенства от нескольких переменных.

Доказательство неравенств методом упорядоченных наборов. Доказательство неравенств при помощи выпуклых функций. Неравенства между средними. Геометрические методы доказательства неравенств.

• Задачи с параметрами.

Линейные уравнения и неравенства с параметрами. Задачи на исследование квадратичной функции (квадратные уравнения и неравенства) и расположение корней квадратного трехчлена. Задачи на исследование корней квадратного трехчлена. Алгоритмический подход в решении уравнений и неравенств с параметрами. Графические приемы при решении задач с параметрами (метод областей). Логические задачи. Необходимость и достаточность.

6. Элементы комбинаторики, статистики и теории вероятностей.

• Случайные события и вероятность.

Случайные события. Случайный эксперимент и его исходы. Вероятность как предельное значение частоты. Опыты с равновозможными исходами. Классическое определение вероятности. Геометрическая вероятность.

• Комбинаторика.

Правила умножения и сложения. Перестановки и размещения, факториал. Сочетания, бином Ньютона, треугольник Паскаля. Комбинаторные задачи с ограничениями. Комбинаторика разбиений.

• Комбинаторика и вычисление вероятностей.

Комбинаторные правила и формулы в задачах на вычисление вероятностей. Классические вероятностные задачи с выбором элементов из конечного множества.

• Свойства вероятностей.

Противоположное событие и его вероятность. Объединение и пересечение событий, диаграммы Эйлера. Несовместные события, правило сложения вероятностей. Независимые события, правило умножения вероятностей. Условная вероятность.

• Случайные величины и их распределения.

Понятие случайной величины, примеры. Распределение вероятностей случайной величины. Примеры распределений. Математическое ожидание и дисперсия. Случай-

ные величины в статистических наблюдениях. Связь числовых характеристик выборки и случайной величины, закон больших чисел.

Анализ данных.

Сбор и анализ статистических данных. Таблицы. Линейные, столбчатые, круговые диаграммы, диаграммы рассеивания.

• Случайная выборка и ее представление.

Генеральная совокупность и случайная выборка. Репрезентативность. Ранжированный ряд. Таблица частот. Группировка данных и интервальная таблица частот. Накопление частоты. Полигон и гистограмма.

Числовые характеристики случайной выборки.

Числовые характеристики среднего: среднее арифметическое, мода, медиана. Числовые характеристики разброса: размах, отклонения, дисперсия, среднее квадратичное отклонение.

Испытания Бернулли.

Повторные независимые испытания, успех и неудача. Число успехов в испытаниях Бернулли. Наивероятнейшее число успехов и распределение Бернулли. Вероятности различных событий в испытаниях Бернулли. Теорема Бернулли об отклонении частоты от вероятности. 7. Геометрия. поскости.

Геометрия на плоскости.

Решение задач по теме: «Окружность». Точка на окружности. Точка внутри окружности. Точка вне окружности. Касающиеся окружности. Пересечение окружностей. Вневписанная окружность. Касательная к окружности. Окружности, связанные с треугольником и четырехугольником. Пропорциональные отрезки в окружности. Углы, связанные с окружностью. Метод вспомогательной окружности. Окружность девяти точек. Метрические соотношения между радиусами вписанной и описанной окружностей.

Решение задач по теме: «Треугольник». Общие свойства треугольника. Свойства биссектрис, высот, медиан. Свойство ортоцентра. Ортотреугольник и серединный треугольник. Соотношения между сторонами и углами. Прямоугольные треугольники. Правильные треугольники. Теорема Чевы. Теорема Менелая.

Решение задач по теме: «Многоугольник». Параллелограмм. Трапеция. Прямоугольники и ромбы. Шестиугольники.

Решение задач по теме: «Площади плоских фигур».

Решение задач по теме: «Векторы».

Стереометрия.

Построение сечений многогранника на основе системы аксиом и следствий из них.

Специальные методы построения сечений многогранников: метод следов, метод внутреннего проектирования, комбинированный метод. Геометрические построения в пространстве.

Расстояния в пространстве. Геометрические построения в пространстве. Примеры решения задач на проекционном чертеже.

Углы в пространстве. Векторный метод. Метод координат и особенности его применения. Двугранные и многогранные углы.

Вычисление объемов. Принцип Кавальери. Поверхности.

Фигуры вращения. Вписанные и описанные шары и сферы. Комбинация фигур вращения. Пересекающаяся сфера и многогранник.

Тематическое планирование курса. 11 класс

Nº	Дата прове-	Содержание (тема) урока	Примечание
урока	дения урока		
1.		Тождественные преобразования тригонометрических выражений. Тригонометрические функции тройного аргумента.	
2.		Уравнения, приводящиеся к простейшим тригонометрическим уравнениям. Однородные тригонометрические уравнения. Решение тригонометрических уравнений методом разложения на множители.	
3.		Применение универсальной подстановки при решении тригонометрических уравнений. Решение тригонометрических уравнений методом введения вспомогательного угла. Решение тригонометрических уравнений методом замены неизвестного.	
4.		Решение тригонометрических уравнений с помощью оценки их левой и правой частей. Отбор корней тригонометрических уравнений.	
5.		Решение уравнений с обратными тригонометрическими функциями.	
6.		Системы тригонометрических уравнений.	
7.		Тригонометрические неравенства.	
8.		Решение тригонометрических уравнений, неравенств и их систем, содержащих переменную под знаком модуля.	
9.		Задачи, связанные с графиками тригонометрических функций	
10.		Задачи с параметрами.	

11.	Смешанная тригонометрия.	
12.	Понятие о пределе последовательности.	
13.	Понятие о пределе функции.	
14.	Понятие о производной функции.	
	Физический и геометрический смысл производной. Уравнение касательной к графику функции. Применение производной к исследованию функции и построению графиков.	
15.	Применение производной при решении прикладных задач.	
16.	Первообразная и неопределенный интеграл. Интеграл и формула Ньютона - Лейбница. Геометрический смысл интеграла и его применение для вычисления площадей и объемов.	
17.	Показательные уравнения. Системы, содержащие показательные уравнения.	
18.	Логарифмические уравнения. Системы, содержащие логарифмические уравнения.	
19.	Комбинированные уравнения.	
20.	Показательные неравенства.	
21.	Логарифмические неравенства.	
22.	Комбинированные неравенства. Метод интервалов при решении неравенств. Метод замены множителей (метод рационализации) при решении неравенств. Метод оценки при решении уравнений и неравенств.	
23.	Геометрический подход к решению негеометрических задач.	
24.	Комбинаторика. Правила умножения и сложения. Перестановки и размещения, факториал. Сочетания, бином Ньютона, треугольник Паскаля. Комбинаторные задачи с ограничениями. Комбинаторика разбиений.	
25.	Случайные события и вероятность.	
26.	Комбинаторика и вычисление вероятностей. Комбинаторные правила и формулы в задачах на вычис- ление вероятностей. Классические вероятностные задачи с выбором элементов из конечного множества.	

27.	Свойства вероятностей.
	Противоположное событие и его вероятность. Объединение и пересечение событий, диаграммы Эйлера. Несовместные события, правило сложения вероятностей. Независимые события, правило умножения вероятностей. Условная вероятность.
28.	Случайная выборка и ее представление. Числовые характеристики случайной выборки.
29.	Испытания Бернулли.
30.	Построение сечений многогранника на основе системы аксиом и следствий из них. Специальные методы построения сечений многогранников
31.	Расстояния в пространстве. Геометрические построения в пространстве. Примеры решения задач на проекционном чертеже.
32.	Углы в пространстве. Векторный метод. Метод координат и особенности его применения. Двугранные и многогранные углы.
33.	Вычисление объемов. Принцип Кавальери. Поверхности.
34.	Фигуры вращения. Вписанные и описанные шары и сферы. Комбинация фигур вращения. Пересекающаяся сфера и многогранник.
35.	Решение задач по стереометрии по материалам вариантов ЕГЭ.